Ribosome
Example 1: yeast ribosomes
In this example we used Warp, AreTomo3, easymode, Relion5, and M to reconstruct, denoise, segment, pick, and average the S. cerevisiae ribosome.
Dataset and computational resources
For this test we used 500 tilt series of plasma-FIB milled S. cerevisiae cells which Sebastian Tacke and colleagues at the MPI Dortmund shared with us. They are not yet available online - but you should be able to follow along with this example using other data sources as well, since easymode networks are general.
We used 4 NVIDIA RTX 4090 GPUs for most processing steps.
At the onset the data in this example consisted of just tilt series and mdocs (we did not use the gain references).
project_root/
├── frames/ # approximately 20.000 .eer files
│ ├── 20240731_l10t01_001_6.0_20240731_170707.eer
│ ├── 20240731_l10t01_002_8.5_20240731_170731.eer
│ └── ...
└── mdocs/ # 500 .mdoc files
├── 20240731_l10t01.mdoc
├── 20240731_l10t02.mdoc
└── ...
Step 1: tomogram reconstruction
easymode reconstruct --frames frames --mdocs mdocs --apix 1.56 --dose 2.05 --no_halfmaps
warp_tiltseries/reconstruction/.
Step 2: tomogram denoising
easymode denoise --data warp_tiltseries/reconstruction --output warp_tiltseries/reconstruction/denoised --mode direct --method n2n --gpu 0,1,2,3
warp_tiltseries/reconstruction/denoised/.
Step 3: ribosome segmentation
easymode segment ribosome --data warp_tiltseries/reconstruction/denoised --output segmented --tta 1 --gpu 0,1,2,3
segmented/*__ribosome.mrc.
Step 4: ribosome picking
easymode pick ribosome --data segmented --output coordinates/ribosome --binning 3 --size 2000000 --spacing 250
coordinates/ribosome/, one per tomogram, containing a total of 109081 ribosome coordinates.
Step 5: exporting particles with WarpTools
conda activate warp
WarpTools ts_export_particles --input_directory coordinates/ribosome --input_pattern "*.star" --coords_angpix 10.0 --output_star relion/ribosome/particles.star --output_angpix 5.0 --box 96 --diameter 250 --2d --relative_output_paths
From here on, we followed the WarpTools tutorial for averaging apoferritin.
Final result
The final average focused on the large ribosomal subunit, after multiple rounds of refinement in M, reached an overall resolution of 3.4 Å and up to 2.6 Å in the best-resolved regions. This average was weighted per tilt and per tilt series (M EstimateWeights --resolve_items --resolve_frames), but did not require any density-based 3D classification.
